Optimization of X-ray event screening using ground and in-orbit data for the *Resolve* instrument onboard the XRISM satellite

 Y. Mochizuki^{[1],[2]}, M. Tsujimoto^[2], C. A. Kilbourne^[3], *Resolve* team
 [1] The University of Tokyo, [2] ISAS/JAXA, [3] GSFC/NASA

• 14/05/2024 IACHEC

□ Resolve event screening: 3 categories (18 items)

- Automatic screening (prev. talk) meets the background requirement and this methods have been established based on the heritage of the SXS
- The detector team continues to consider more effective screening methods, and three of the most important ones will be presented in this presentation.
- □ This work based on (a) ground testing data and (b) in-orbit data.
- These results are planned to be incorporated into automated or additional processing before PV or GO data are distributed to users.

Outline

- 1 Introduction
 - 1-a XRISM/Resolve
 - 1-b Detector
 - 1-c In-orbit processing of pixel events
 - 1-d Event screening
- 2 Individual screening
 - 2-a Pulse shape (2D screening)
 - 2-b Relative event timing (Electrical crosstalk)
 - 2-c Good time intervals (SAA region)
- 3 Conclusion

Outline

1 Introduction

- 1-a XRISM/Resolve
- 1-b Detector
- 1-c In-orbit processing of pixel events
- 1-d Event screening
- 2 Individual screening
 - 2-a Pulse shape (2D screening)
 - 2-b Relative event timing (Electrical crosstalk)
 - 2-c Good time intervals (SAA region)
- 3 Conclusion

1-a XRISM/Resolve

1-b Detector - X-ray microcalorimeter

- Detection
 - T increase by energy deposit by γ . Decrease in thermometer resistance.
- Voltage readout for phase shape.
- Sampled at 12.5 kHz.
- X-correlated with template shape.

- Prepare the using frequency dependence of average pulse and average noise in advance.
- Estimate the most likely *H* from observed pulse *D*

1-c In-orbit processing of pixel events

Pulse shape resolved by sampling, but only characteristic values are downlinked due to telemetry limit (except for some pulses for diagnosis: "pulse records").

Some characteristic values:

- Max value of time-deriv of pulse
- Rising time ~ t₂ t₁
- Time shift against template.
- Pulse height by X-correlation.

1-b Detector - X-ray microcalorimeter

1-b Detector - Anti-co

- Anti-coincidence detector
- Located beneath the X-ray microcalorimeter
- Anti-co screening of cosmic ray events.

1	-d	Event	scree	ning

- Resolve event screening:3 categories (18 items)
- Pulse shape (7 items)
- Relative timing of event arrival times (5 items)
- Good time intervals (6 items)

e num	ltems	SXS	Resolve (in this study)
l-a	Pulse shape (7/7 items)		
	RISE_TIME	Yes	Revised screening conditions
	TICK_SHIFT	No	New screening conditions
DERIV_MAX		No	New screening conditions
QUICK_DOUBLE		Yes	Same as SXS
	SLOPE_DIFFER	Yes	Same as SXS
	FLAG_CLIPPED	No	New screening conditions
	SLOW_PULSE	Yes	Same as SXS
I-b	Relative event timing (4/5 ite	ms)	
	Anti-coincidence veto	Yes	Revised anti-co window
	Electrical crosstalk (short)	Yes	New CTELDT and pharatio
	Frame events (CR)	No	Proposed change to the number of
	Frame events (X-ray) Yes events		events in the time window
	Electron recoil	Yes	Same as SXS
	Electrical crosstalk (long)	Yes	leave it to Caroline-san et al.
l-c	Good time intervals (4/6 item	s)	
	ADR recycling	No	Confirm GTI calculated by rsladrgti
	South Atlantic Anomaly	Yes	Revised SAA region
	Earth elevation (ELV)	Yes	Same as SXS for observational data New threthold for NXB
	Cut off Rigidity (COR)	No	Same as SXS
	MXS	Yes	leave it to Sawada-san et al.
	pixel	Yes	leave it to Mizumoto-san et al.

Slid

1-d Event screening

Automatic screening:3 categories (11 items)

- Pulse shape (4 items)
- Relative timing of event arrival times (2 items)
- Good time intervals (5 items)

ide num	ltems	SXS	Resolve (in this study)		
1-a	Pulse shape (7/7 items)				
	RISE_TIME	Yes	Revised screening conditions		
	TICK_SHIFT	No	New screening conditions		
	DERIV_MAX	No	New screening conditions		
	QUICK_DOUBLE		Same as SXS		
	SLOPE_DIFFER	Yes	Same as SXS		
	FLAG_CLIPPED	No	New screening conditions		
	SLOW_PULSE	Yes	Same as SXS		
1-b	Relative event timing (4/5 iter	ms)			
	Anti-coincidence veto	Yes	Revised anti-co window		
	Electrical crosstalk (short)	Yes	New CTELDT and pharatio		
	Frame events (CR)	No	Proposed change to the number of		
	Frame events (X-ray)	Yes	events in the time window		
	Electron recoil	Yes	Same as SXS		
-	Electrical crosstalk (long)	Yes	leave it to Caroline-san et al.		
1-c	Good time intervals (4/6 items)				
	ADR recycling	No	Confirm GTI calculated by rsladrgti		
	South Atlantic Anomaly	Yes	Revised SAA region		
	Earth elevation (ELV)	Yes	Same as SXS for observational data New threthold for NXB		
	Cut off Rigidity (COR)	No	Same as SXS		
	MXS	Yes	leave it to Sawada-san et al.		
	pixel	Yes	leave it to Mizumoto-san et al.		

1-d Event screening

• Requirement Non Xray Background (NXB) counts rate is

 $\leq 2 \times 10^{-3}$ counts/s/keV/array (0.3 – 12 keV)

Screening way	Background counts rate $(0.3-12 \text{ keV})$				
Before screenin	1.5×10^{-2} counts/s/keV/array				
Automatic screenin	1.8×10^{-3} counts/s/keV/array				

Automatic screening (by pipeline) satisfies the requirement.

Outline

- 1 Introduction
 - 1-a XRISM/Resolve
 - 1-b Detector
 - 1-c In-orbit processing of pixel events
 - 1-d Event screening
- 2 Individual screening
 - 2-a Pulse shape (2D screening)
 - 2-b Relative event timing (Electrical crosstalk)
 - 2-c Good time intervals (SAA region)
- 3 Conclusion

	Slide num	ltems	SXS	Resolve (in this study)
2 Scona	1-a	Pulse shape (7/7 items)		
		RISE_TIME	Yes	Revised screening conditions
		TICK_SHIFT	No	New screening conditions
		DERIV_MAX	No	New screening conditions
		QUICK_DOUBLE	Yes	Same as SXS
		SLOPE_DIFFER	Yes	Same as SXS
Event screening: 18 items		FLAG_CLIPPED	No	New screening conditions
		SLOW_PULSE	Yes	Same as SXS
• we studied 15/18 items	1-b	Relative event timing (4/5 items)		
(YM master's thesis, 2023,		Anti-coincidence veto	Yes	Revised anti-co window
		Electrical crosstalk (short)	Yes	New CTELDT and pharatio
001).		Frame events (CR)	No	Proposed change to the number of
		Frame events (X-ray)	Yes	events in the time window
Today's talk:		Electron recoil	Yes	Same as SXS
4/1E items (2 tension)		Electrical crosstalk (long)	Yes	leave it to Caroline-san et al.
4/15 items (3 topics).	1-c	Good time intervals (4/6 items)		
		ADR recycling	No	Confirm GTI calculated by rsladrgti
		South Atlantic Anomaly	Yes	Revised SAA region
		Earth elevation (ELV)	Yes	Same as SXS for observational data New threthold for NXB
		Cut off Rigidity (COR)	No	Same as SXS
		MXS	Yes	leave it to Sawada-san et al.
		pixel	Yes	leave it to Mizumoto-san et al.

2-a 2D screening – Rising time

16/28

2D screening using 2 characteristic values of pulses.

2-a 2D screening – Time shift

Black dot: Events Blue line: Screening criteria (proposed)

東京大学

2-a 2D screening - Evaluation

- Effective screening in soft X-ray band when GV opens.
- Need to know the relation between the parent & child events (= electrical crosstalk noise events).
- Monochromatic line data in ground-test used.

	OBSID	Period	Line	Energy (keV)
1	097091610	$2022/02/01 04{:}00 - 2022/02/01 08{:}00$	Fe K α	6.4
2	097091650	$2022/02/01 20{:}00 - 2022/02/02 00{:}00$	Au L $lpha$	9.7
3	097091750	$2022/02/02 20{:}00 - 2022/02/03 00{:}00$	Au L β	11.4

Au L β 11.4 keVTime windowPHA windowSample time of parent event – Sample time Parent pulse height over
of child event (parent pixel number ± 1)child pulse height (= pharatio)

□ Proposed cross-talk window.

- Define SAA region based on anti-co count rate.
- Pixel and anti-co event dataset during night-earth eclipses from 11/10/2023 to 21/02/2024 used.
- Examine relation between anti-co count rate and
 - NXB pixel counts rate
 - FWHM of calibration source (Mn K α line)

2-c SAA region

Anti-co count rate < 3 (1/s) is a good threshold.

2-c SAA region

SAA region based on anti-co count rate > 3 (1/s)

How to plot
 Anti-co counts made to 1s bin
 and averaged over a 2°x2° mesh
 of projected longitude and
 latitude.
 Color map
 Anti-co count rate

Blue line
Derived SAA region

Outline

- 1 Introduction
 - 1-a XRISM/Resolve
 - 1-b Detector
 - 1-c In-orbit processing of pixel events
 - 1-d Event screening
- 2 Individual screening
 - 2-a Pulse shape (2D screening)
 - 2-b Relative event timing (Electrical crosstalk)
 - 2-c Good time intervals (SAA region)

3 Conclusion

3 Conclusion

- □ Investigated three of the most important screening of *Resolve*.
- **D** 3 topics:
- Pulse shape (2D screening); user selected screening
- Useful for optional additional screening. NXB decreases by a half at a small loss of signals.
- Relative event timing (Electrical crosstalk); user selected screening Useful after GVO. Screening criteria (asymmetric time window and pharatio) proposed.
- Good time intervals (SAA region); general screening
 SAA region based on anti-co count rate. the smallest convex-only region.
 Fully automated and can be updated easily when SAA moves.

